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Just above the liquid-vapor critical point, a fluid’s large compressibility causes a stable stratification
in which the density varies by as much as 10% in 1 cm. This stratification supports internal gravity
waves which we observed with an oscillator immersed in a near-critical xenon sample. We found
the number and frequencies of the observable modes depended on the sample cell’s orientation, with
only two modes seen in the horizontal cell. The frequencies of the two modes had different
temperature dependences: with decreasing temperature, the higher frequency increased
monotonically from 0.7 to 2.8 Hz, but the lower frequency varied nonmonotonically, with a
maximum of 1.0 Hz at 20 mK above the critical temperature. These temperature dependences
continued to 20 mK below the critical temperature, where the xenon was separated into liquid and
vapor phases. We calculated these two frequencies by solving the eigenvalue problem of internal
waves in a box containing a stratified fluid. The fluid’s density profile was obtained from xenon’s
equation of state. The calculated and measured frequencies agree to within 15%. Analytical
calculations based on simple approximations of the density profile provide insight into the observed
temperature dependences. © 1996 American Institute of Physics. �S1070-6631�96�00806-5�

I. INTRODUCTION

Just above the liquid-vapor critical point, a fluid’s large
compressibility causes a stable vertical stratification in which
the density varies by as much as 10% in 1 cm. In a closed
container, this unusual density profile can support internal
gravity waves that are sustained by the potential energy gen-
erated by vertical displacement of the fluid elements, and
whose modes are reminiscent of the ‘‘sloshing’’ modes of a
cup of water. Such gravity-induced stratification is a special
case of a continuous density profile, and it is interesting for
several reasons. First, for all pure fluids at the liquid-vapor
critical point, the density profile has a universal sigmoid
shape �curved like the letter S�. Second, the density profile
can be varied from sigmoid to linear simply by raising the
sample’s temperature. Third, the stratification is a controlled,
stable equilibrium state. In contrast, the salt-water layers
used in other laboratory studies of internal waves relax via
diffusion.

Descriptions of internal-wave motion are frequently in-
cluded in textbooks on hydrodynamics,1–5 and more detailed
discussions can be found in specialized books.6–9 Internal-
wave modes are important for the understanding of fluid mo-
tions in any stratified fluid, such as the atmosphere, the
ocean, lakes, stellar interiors, and even the air in buildings
naturally stratified by heat or accidentally stratified by fires.10

Experimentalists have previously remarked on the existence
of internal-wave modes near the critical point.11 Only a few
papers have been published on this subject, mostly in Soviet
journals.12–14 These papers were concerned with exploratory
questions such as the existence of gravitational waves or the

dispersion relation at the critical temperature Tc . Thus they
could not help us in identifying the observed internal-wave
modes or in measuring and calculating their frequencies.

Figure 1 shows the form of the density profile �(z) near
the critical point of xenon. At temperatures far above Tc ,
�(z) is approximately linear in the height z because the flu-
id’s compressibility is independent of z . As discussed later,
this linear profile can be approximated by an exponential
profile, thus allowing a closed-form solution for the internal-
wave modes in a box. However, at temperatures just above
Tc , the profile is strongly nonlinear because there the fluid’s
compressibility is a strong function of density as well as
temperature. At Tc , the slope d�/dz diverges at the height
where the density equals the critical density �c . Below Tc , a
sharp interface, where the density changes discontinuously,
divides the liquid and vapor regions. At temperatures far
below Tc , the variations of density within each region are
small compared to the difference between the regions. Ap-
proximation of the density profile by two discrete densities
allows a closed-form solution.

We observed internal waves with an oscillator immersed
in a near-critical xenon sample. The number and frequencies
of the observable modes depended on the sample cell’s ori-
entation, with only two modes seen in the horizontal cell.
The frequencies of the two modes had different temperature
dependences: with decreasing temperature, the higher fre-
quency increased monotonically from 0.7 Hz to 2.8 Hz, but
the lower frequency varied nonmonotonically, with a maxi-
mum of 1.0 Hz at 20 mK above the critical temperature. �See
Figure 2.� We calculated these two frequencies by solving
the eigenvalue problem of internal waves in a box containing
stratified fluid. The fluid’s density profile was obtained from
xenon’s equation of state. The calculated and measured fre-
quencies agree to within 15%.

When the cell’s orientation was changed by 90°, the
oscillator coupled to as many as five modes of the xenon.
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Again, our calculated frequencies were consistent with the
temperature-dependent range of the observed frequencies.

Our measurements were motivated by the need to char-
acterize accurately a viscometer intended to measure the vis-
cosity of xenon near its liquid-vapor critical point.15,16 The
viscometer consisted of an overdamped, oscillating screen
immersed in the xenon, and changes in viscosity could be
inferred from changes of the oscillator’s transfer function.
The transfer function is the frequency-dependent ratio of the
oscillator’s displacement to its applied torque. Close to Tc ,
the stratification caused by Earth’s gravity limited the viscos-
ity measurement in two ways. First, the interesting region
having densities near the critical density �c narrowed to a
thin layer near the sample’s midplane. This limited the pre-
cision of the measurement of the critical point enhancement
of viscosity. Second, the stratification supported internal

wave modes within the viscometer’s bandwidth of operation.
Because these internal-wave modes were not included in the
model of the viscometer, they limited the measurement’s ac-
curacy.

The viscometer was designed for ultimate use in the
Space Shuttle’s microgravity, where the effect of internal
waves will be negligible. The xenon was contained within a
simple cylinder; however, the internal geometry was compli-
cated by electrodes and the oscillator itself. �See Figure 3.�
The calculation of the frequencies of the internal-wave

FIG. 1. The density profile of the xenon sample calculated by Eqs. �1� at
various reduced temperatures. Far above Tc , the height dependence is weak
and approximately linear. At Tc , the density gradient is infinite at the
middle height, where ���c . Far below Tc , the xenon separates into liquid
and vapor layers, each of nearly constant density.

FIG. 2. Internal wave frequencies, measured �circles� and calculated �lines�.
The cell’s axis was horizontal and the screen’s torsion axis was vertical, so
that the screen’s motion was horizontal. The numerical calculations used the
actual profiles derived from xenon’s equation of state.

FIG. 3. �a� Schematic diagram of the viscometer to be used in the Critical
Viscosity Experiment �CVX�. The brass baffle, introduced to reduce the
amplitude of the internal waves, was not present during these measurements.
During the measurements made with cell’s axis horizontal, the cell was
rotated so that gravity was along the z-axis. �b� The box used to calculate
the internal wave frequencies. The box width a was chosen as the distance
between the front pair of fixed electrodes. The box length b was defined as
the cell’s length, and the box height 2L as the cell’s height. This approxi-
mation ignored the various supporting wire struts, which occupied a small
fraction of the cell’s cross-section, and the oscillating screen itself, because
of its small mass and weak mechanical compliance. The approximation also
assumed the opposing pairs of electrodes acted as rigid, vertical walls span-
ning the cell’s height and length. In reality, each pair occupied only 1/3 of
the area bc . However, the pairs overlapped all of the screen except for a
small portion near the torsion axis, where the screen’s motion was small.
Gravity is along the �vertical� z-axis.

1465Phys. Fluids, Vol. 8, No. 6, June 1996 Berg et al.



modes relied on a simple approximation of the container’s
internal geometry.

Fortuitously, the viscometer had several advantages for
studying internal-wave modes. First, the viscometer was sen-
sitive to three-dimensional internal-wave modes because the
oscillator had both a sufficiently low mass and a low reso-
nance frequency so that it was sensitive to weak hydrody-
namic forces, and because the oscillator spanned at least half
the length of the sample cell. In contrast, conventional tech-
niques for flow visualization, such as schlieren imaging or
the use of tracer particles, are best suited for two-
dimensional flows only. The second advantage was the vis-
cometer’s internal symmetry, which restricted the oscillator
from coupling to most of the internal-wave modes. This re-
striction was useful due to the small spacing between modes.
For example, even with the three modal indices restricted to
only 0, 1, or 2, the frequencies calculated for 9 of the 16
possible modes can fall within a range of only 6%. Without
the coupling restriction, the overlap of many modes would
have complicated the interpretation of the measurements.

In the following, after briefly explaining the nature of the
density profile, we will describe our measurements of the
internal wave frequencies. Then we will describe the compu-
tational techniques that we used to obtain these frequencies
from the equations of fluid mechanics, the sample cell’s ge-
ometry, and xenon’s equation of state. The measured and
calculated frequencies will then be compared.

II. THE DENSITY PROFILE NEAR THE CRITICAL
POINT

We calculated the sample’s density profile �(z) from
xenon’s equation of state. Near the liquid-vapor critical
point, the divergences of thermodynamic derivatives such as
compressibility and heat capacity cause conventional equa-
tions of state to fail. Thus, we used Ho and Lister’s17 ‘‘re-
stricted cubic model’’ which accounts for such divergences
in a natural manner. This scaled equation of state, summa-
rized by Moldover et al.,18 uses the parametric variables r
and � , which are defined in terms of the temperature T and
density � �or the reduced variables �T* and ��*� by

�T*�
�T�Tc�

Tc
�r�1�b2�2�, �1a�

��*�
����c�

�c
�kr	��1�c�2�, �1b�

�
*�� �c

Pc
� �
�� ,T ��
��c ,T ���ar	��1��2�. �1c�

The variable � can range from �1 to �1, with ��0 corre-
sponding to �c . The last equation defines the reduced chemi-
cal potential �
*. Here Pc is the critical pressure. The iso-
thermal density profile �(z) can then be determined from the
variation of the reduced chemical potential with height,18

�
*��(g�c /Pc)z , where g is the gravitational accelera-
tion and z�0 at ���c . In the above expressions, the con-
stants b and c and the exponents 	 and � are universal for all
pure fluids, while the constants a and k are peculiar to xe-
non. �See Table I.� Compressibility has such a strong diver-

gence that the critical region parameters can be determined
from optical measurements of �(z). We used the values a
and k determined by Hocken and Moldover.18,19 Solution of
Eqs. �1� yields the density profile, and profiles calculated for
several temperatures near Tc are shown in Figure 1. Profiles
such as these were used in our numerical calculations of the
internal-wave frequencies.

At temperatures below Tc , the fluid separates into liquid
and vapor phases separated by a discontinuous change of
density. As shown in Figure 1, the density varies continu-
ously with height within each phase. However, below
Tc�20 mK, this variation is small compared to the differ-
ence between phases, and the densities of the two phases are
then given by the restriction ���1, so that

���c� 1�B� � Tc�T

Tc
� 	� � . �2�

Here, the ‘‘�’’ is used for the denser, liquid phase, and
B�1.602k .

III. APPARATUS

The viscometer consisted of an oscillator and its associ-
ated electrodes contained within a copper cell whose inner,
cylindrical space was 38 mm long and 19 mm in diameter.
One end of the cylinder was sealed by a sapphire window,
and the other end by a brass plate containing five electrical
feedthroughs connected to the oscillator and its electrodes.

Figure 3a is a sketch of the viscometer. The oscillator
was constructed by cutting an 8�19 mm rectangle out of a
larger piece of nickel screen while leaving attached two wire
extensions that formed the torsion fiber. The screen’s cross-
section area in the flow direction was small: it consisted of
0.03-mm wide wires spaced 0.85 mm apart.

The torsion fibers were attached to a stiff yoke with
Pb-Sn solder. The yoke was centered between four elec-
trodes parallel to the screen, and the complete assembly was
sealed into the cell. The fixed electrodes, separated by a 7.6
mm gap, were connected electrically into diagonally oppo-
site pairs. In vacuum, the lowest resonance frequency of the
oscillator was the torsion mode at 11 Hz, which was anti-
symmetric about the torsion axis. The resonance frequency
of the next lowest mode was much higher, above 50 Hz, and
this mode was symmetric about the torsion axis. Due to both
the large difference in these two frequencies and the symme-
try of the driving electrodes, only the torsion mode was ex-
cited in the present measurements.

TABLE I. Parameters for xenon’s equation of state.

Tc 289.7 K
Pc 5.840 MPa
�c 1110 kg•m3

a 15.4
k 0.89
B 1.43
	 0.325
� 4.815
b2 1.277
c 0.055
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After characterization of the oscillator in vacuum, xenon
was loaded into the viscometer cell. The loading was ad-
justed at a temperature just below Tc until the liquid-vapor
meniscus was at the cell’s middle height, so that the average
density in the cell was within 0.2% of the critical density
�c . Observation of the appearance and disappearance of the
meniscus determined Tc to within 1 mK.

After loading, the cell was placed into a thermostat con-
sisting of three independently-controlled, concentric alumi-
num shells. In this environment, the cell’s temperature was
measured to be stable to within 0.03 mK over several hours,
and the maximum temperature difference across the cell was
calculated to be less than 0.2 
K.

A commercial spectrum analyzer generated oscillating
source voltages which, after modification, were used to apply
torques to the oscillator. The modification compensated for
the quadratic dependence of torque on the voltage between
the electrode pairs and the screen. The source voltage was
first added to two dc bias voltages of opposite sign. The
biased sums were then amplified by square root amplifiers
and the resulting voltages were applied to the diagonally
opposed electrode pairs.

The oscillating screen and the fixed electrodes also
formed a capacitance bridge that was operated at 10 kHz to
detect the screen’s displacement. The bridge’s signal was
detected by a lock-in amplifier whose time constant was set
sufficiently low, from 0.04 to 0.4 s, to avoid attenuation of
the detected motion. The amplifier’s output was proportional
to the difference between the capacitance of each pair of
electrodes and the screen; thus it was a nearly linear function
of the screen’s displacement. The amplifier’s output was
continuously measured by the spectrum analyzer.

Further details may be found in References 15 and 16.

IV. MEASUREMENT OF THE INTERNAL WAVE
FREQUENCIES

Our measurement technique assumed the internal-wave
mode was a massive, high-Q oscillator coupled weakly to
the low-mass oscillating screen. The expected Q of an inter-
nal wave mode was estimated to be R/� , where R�3 mm is
a length typical of the sample cell’s interior, and � is the
viscous penetration length. At the typical internal-wave fre-
quency of �/2�1 Hz,

��� 2�

�c�

�� �2 ��5�10�5 Pa•s�

�1100 kg•m�3��2•1 s�1�
�0.12 mm, �3�

where � is xenon’s viscosity. Thus Q�R/��25 was ex-
pected. Although the observed Q’s were less than 25, they
were still sufficiently large for the technique to succeed.

To bring the fluid into steady oscillations, the screen was
driven at a frequency f drive for at least 10 cycles. Then the
drive was turned off, and the screen’s residual motion was
recorded. If f drive was near an internal-wave frequency, sub-
sequent transient oscillations were visible, and the frequency

of the internal wave was assigned after examination of the
transient waveform’s spectrum. Figure 4 shows an example
of a particularly strong internal-wave mode.

To ensure equilibrium of the density profile, we waited
at least 4 hours after changing the temperature. Due to the
fluid’s slow thermal diffusion, such a wait is typical for
centimeter-sized critical point samples. Then a series of drive
frequencies was used to search for internal-wave modes.
Typically, this search covered the range from 0.5 to 2.0 Hz
in 0.1 Hz steps. The oscillator’s small amplitude did not
disrupt the stratification, as evidenced by the reproducibility
of successive searches made at the same temperature. Thus
15 drive frequencies could be tested in as many minutes.
Searches to as low as 0.3 Hz or as high as 20 Hz found no
modes other than those reported here.

Two sets of measurements were made. The first set,
listed in Table II, was made with the cell’s axis horizontal
and the oscillator’s torsion axis vertical. The second set was
made with the cell’s axis vertical, so that the oscillator’s
torsion axis was horizontal.

FIG. 4. Example of an internal wave frequency measurement. �a� The os-
cillator’s displacement shown during and after application of an oscillating
torque at 0.875 Hz. �b� The oscillator’s displacement during the same inter-
val, magnified by 100.

TABLE II. Experimental and calculated frequencies in Hz for the horizontal
cell.

(T�Tc)/mK exp. �111� exp. �112� calc. �111� calc. �112�

�27.6 - 0.53 2.753 0.460
�17.8 2.78 0.54 2.593 0.526
�7.5 2.56 0.59 2.358 0.623

2.4 2.22 0.78 1.979 0.772
7.2 2.00 0.87 1.786 0.853

12.6 1.78 0.95 1.618 0.901
22.3 1.44 0.97 1.377 0.913
42.4 1.16 0.87 1.066 0.823
72.0 0.91 0.72 0.810 0.667

112.4 0.71 0.57 0.624 0.523
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V. THEORETICAL FORMULATION

Both buoyancy and acoustic forces contribute to the os-
cillations of a fluid element. The associated Brunt-Väisälä
frequency N(z) is, at each height z , the local frequency with
which an adiabatic, inviscid fluid element oscillates.9 It can
be expressed as the sum of two terms,

N2�z ���� g

�

d�

dz
�

g2

c0
2 � , �4�

where g is the gravitational acceleration, �(z) is the local
fluid density, and c0(z) is the local speed of sound. If the
g2/c0

2 term is small relative to the first term, then, according
to Ref. 9, the coupling between internal waves and acoustic
waves is negligible.

We verified (g/�)d�/dz�g2/c0
2 by numerically calcu-

lating both terms in the stratified xenon. The speed of sound
was calculated from thermodynamic principles and param-
eter values specific to xenon.20,21 The density derivative pro-
file was calculated from Eqs. �1�. At all heights in the
sample, (g/�)d�/dz was at least two orders of magnitude
greater than g2/c0

2 , and thus compressibility effects on the
wave motion could be neglected.

The development of this section proceeds as follows: the
set of partial differential equations governing the fluid dy-
namic behavior is introduced and linearized for small veloc-
ity. The boundary conditions, together with various approxi-
mations, are used to generate an ordinary differential
equation in the amplitude of the vertical velocity which con-
tains the frequency, an unknown parameter. This differential
equation and its boundary conditions form an eigenvalue
problem. This problem is solved for four classes of density
profiles. The special case of the exponential density profile is
solved first. Next, the general problem for T�Tc , where
xenon is stratified in a single phase, is solved using two
independent numerical methods. Then, the general problem
for T�Tc , where an interface separates the xenon into strati-
fied liquid and vapor phases, is addressed numerically. Fi-
nally, the special case where an interface separates two flu-
ids, each of constant density, is solved.

A. Eigenvalue problem development

The derivation of the equation for the vertical compo-
nent of the perturbation velocity follows, for example, Ref.
8. The analysis is for an adiabatic, incompressible, and in-
viscid fluid. The governing equations are given by

“–u�0, �5a�

�� �u

�t
�u–“u���“p��g êz , �5b�

��

�t
�u–“��0, �5c�

where u�(u ,v ,w) and p denote the velocity and pressure
fields, respectively. Here êz is a unit vector in the z direction
�anti-parallel to gravity�. Perturbation about the state of zero
velocity and hydrostatic equilibrium, followed by lineariza-
tion, yields the perturbation partial differential equations

“–u�1 ��0, �6a�

��0 �
�u�1 �

�t
��“p �1 ����1 �g êz , �6b�

���1 �

�t
�w �1 �

d��0 �

dz
�0, �6c�

where � (0) is the density of the unperturbed base state, and
the superscript ‘‘�1�’’ denotes the deviation of quantities
from equilibrium.

The xenon-filled viscometer is modeled as a rectangular
box defined by 0�x�a , 0�y�b , and �L�z�L . �The
choices of the box’s dimensions will be discussed in the
Results section.� The normal component of velocity at the
walls must be zero. This implies that at x�0 and at x�a ,
u (1)�0, while at y�0 and at y�b , v (1)�0. This suggests
that the form of the perturbation field is

u �1 ��x ,y ,z ,t �� û�z �sin�qxx �cos�qyy �ei�t, �7a�

v �1 ��x ,y ,z ,t �� v̂�z �cos�qxx �sin�qyy �ei�t, �7b�

w �1 ��x ,y ,z ,t ��ŵ�z �cos�qxx �cos�qyy �ei�t, �7c�

p �1 ��x ,y ,z ,t �� p̂�z �cos�qxx �cos�qyy �ei�t, �7d�

��1 ��x ,y ,z ,t �� �̂�z �cos�qxx �cos�qyy �ei�t, �7e�

where qx� j /a and qy�k/b are the wave numbers in the
x and y directions and the integers j and k are the corre-
sponding mode indices. Substitution of Eqs. �7� into Eqs. �6�
yields a set of ordinary differential equations for the pertur-
bation eigenfunctions, which are the z-dependent quantities
indicated by the caret. Upon manipulation, these equations
can be combined to yield a single equation for ŵ , which is

d2ŵ

dz2 �
N2

g

dŵ

dz
�q2� 1�

N2

�2� ŵ�0. �8�

Here, q2�qx
2�qy

2 , and N2(z)��(g/� (0))(d� (0)/dz). Equa-
tion �8�, together with the boundary conditions
ŵ(�L)�ŵ(�L)�0, form the eigenvalue problem for the
frequency � .

B. Special case: Exponential density profile, T>Tc

Above TC� 80 mK, our xenon sample’s density profile
was nearly linear, which we approximated by the special
case of an exponential density profile. An exponential profile
has a Brunt-Väisälä frequency N which is independent of
height, allowing solution of the flow field equations in closed
form. These solutions provided for rapid visualization of the
flow field, and they gave an indication of which modes
would be likely to couple to the oscillating screen’s motion.

The closed-form eigenfunction solution is given by

ŵ�z ��
g

N
exp� N2z

2g � sin� � l

2 � � z

L
�1 � � . �9�

The dispersion relation is

�2�
q2N2

q2��N2/2g �2��l/2L �2 . �10�
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Note that �2�N2, and that �2 decreases with increasing
mode index l .

The frequencies calculated for modes ( jkl)��111� and
�112� are plotted in Figure 5. The value of N2/g used in Eq.
�10� was based on the density gradient at the cell’s midplane,
in turn calculated from Eqs. �1�.

The remaining perturbation velocity components are
given by

û�z ��
qx

q2

dŵ

dz
, v̂�z ��

qy

q2

dŵ

dz
. �11�

The flow field for modes �111� and �112� are shown in
Figures 6 and 7. Although calculated for the case of an ex-
ponential density profile, these figures are qualitatively simi-
lar to the flow fields of the actual density profiles, even at
temperatures close to Tc . Thus the exponential approxima-
tion was useful for deciding which modes coupled to the
oscillating screen.

C. Computational approach: Actual density profile,
T>Tc

For T�Tc , the xenon was a single phase fluid whose
density profile was not exponential. Therefore, we obtained
the eigenfrequencies by numerically solving Eq. �8�. It
proved convenient to work with a nondimensional equation.
Let

z�LZ , ŵ�w0W , �12�

where L is the half-height of the box and w0�(gL)1/2 is a
velocity scale. These nondimensionalizations were used in
Eq. �8�. A pseudospectral collocation method was applied in
the standard manner22 to the resulting nondimensional equa-

tion and its associated boundary conditions. Chebyshev poly-
nomials were used as the expansion functions. It was first
necessary to expand the density and density derivative pro-
files in a Chebyshev representation. We calculated the eigen-
frequencies for cases having different density profiles, each
associated with a different temperature above Tc . Closer to
Tc , the density profile’s derivative contains a sharp peak.
Thus, in order to capture accurately the density and density
derivative profiles, it was necessary to employ 900 terms in
the Chebyshev expansion for the calculation corresponding
to T�Tc�1 mK. For T�Tc�2 mK, 512 terms in the
Chebyshev expansion were found to be adequate. For
T�TC�20 mK, 256 terms were adequate.

As a check on the frequencies obtained via the colloca-
tion approach, an alternate method was used to solve the
problem at selected temperatures. This second method, given
by Keller,23 converted the eigenvalue problem with its ho-

FIG. 5. Comparison between numerically �solid lines� and analytically
�dashed lines� computed internal wave frequencies for the horizontal orien-
tation. Above Tc�60 mK, the linear density profile can be approximated by
an exponential, allowing use of Eq. �10�, which matches the numerical re-
sults. Below Tc , the fluid is separated by an interface into liquid and vapor
layers. Neglect of the stratification within each layer allows use of Eq. �20�,
which describes mode �111�’s temperature dependence at temperatures be-
low Tc�5 mK. Neglect of the liquid layer entirely and assumption of an
exponential density profile within the vapor phase allows the use of Eq. �10�
to approximate the temperature dependence of mode �112� below Tc�5
mK.

FIG. 6. The flow field of mode �111� calculated by Eqs. �9� and �11� for the
special case of an exponential profile with N2�25 s�2

. The coordinates
correspond to those of Figure 3b. In the lowest view, the arrows were
lengthened by a factor of 2 relative to those in the upper two views.
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mogeneous boundary conditions into an inhomogeneous,
two-point boundary value problem with non-constant coeffi-
cients. This linear problem was then solved by the SUPORT

code.24 This numerical code uses superposition of the inte-
grated solutions coupled with a Gram-Schmidt orthonormal-
ization procedure to maintain linear independence of the so-
lutions. Numerical integration of the ordinary differential
equation in the SUPORT code is done with a higher-order
Adams-type method. In all cases, Keller’s method and the
pseudospectral collocation method agreed to at least six dig-
its in the eigenvalue.

The frequencies computed for the modes with ( jkl)
equal to �111� and �112� are plotted in Figures 1 and 5 �for
T�Tc�. In these computations, the density profiles, calcu-
lated from Eqs. �1� using the parameters given in Ref. 18,
were the actual profiles expected from xenon’s equation of

state. Table II contains values calculated at the experimental
temperatures.

D. Computational approach: Actual density profile,
T<Tc

For T�Tc , the xenon sample consisted of both vapor
and liquid phases separated by an interface. Each of the
phases was density stratified. For this case, only a single
numerical treatment was employed, again based on the
SUPORT code.

It is convenient to work in terms of a perturbed vertical
flux h (1), defined as

hv
�1 ���v

�0 �wv
�1 � , hl

�1 ��� l
�0 �wl

�1 � , �13�

where the vapor and liquid phases are denoted by the sub-
scripts v and l , respectively.

Proceeding from the perturbation system of Eqs. �6�, a
system in (p (1),h (1)) can be obtained in each phase. It is
given by

�2h �1 �

�t2 �N2�z �h �1 ���
�2p �1 �

�t�z
, �14a�

� �2

�x2 �
�2

�y2� p �1 ��
�2h �1 �

�t�z
�

N2�z �

g

�h �1 �

�t
. �14b�

The boundary conditions on the perturbed vertical flux are
hl

(1)(�L)�hv
(1)(�L)�0. The forms of h (1) and p (1) are

consistent with the forms of the perturbations given in Eqs.
�7�.

The interface which separates the vapor and liquid re-
gions is given by

F�x ,y ,z ,t ��z� f �x ,y ,t ��0. �15�

In the base state the interface is given by z�0, and the form
of the interface deflection f is consistent with the forms of
the perturbations in Eqs. �7�. The pressure and the normal
component of the velocity are continuous across the inter-
face. Finally, the kinematic condition DF/Dt�0 is imposed.
After linearization, these boundary conditions at z�0 be-
come

ĥv

�v
�0 � �

ĥ l

� l
�0 � �i� f̂ , �16�

� p̂v� p̂ l��g��v
�0 ��� l

�0 �� f̂ . �17�

Upon approaching Tc , the effect of surface tension becomes
negligible compared to the liquid-vapor density difference.
Thus, surface tension is neglected in Eq. �17�.

After substitution of the perturbation forms for h (1) and
p (1) into Eqs. �14�, a linear, coupled system of ordinary dif-
ferential equations in the perturbation amplitudes ĥ and p̂ is
obtained in each phase. This system is nondimensionalized
using the scales given in the previous section, together with
the scale �cLg for the pressure.

An iterative numerical method is used to determine the
frequency in the following manner. The interface deflection
f̂ is set to a fixed nonzero value. For a given value of the
frequency, the system is integrated from z��L to z�0 in

FIG. 7. The flow field of mode �112� calculated by Eqs. �9� and �11� for the
special case of an exponential profile with N2�25 s�2

. The coordinates
correspond to those of Figure 3b. In the lowest view, the arrows were
lengthened by a factor of 2 relative to those in the upper two views.
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the liquid region, and from z��L to z�0 in the vapor
region, using Eqs. �16� as boundary conditions for ĥ at
z�0. The computed interface pressures from the vapor and
liquid regions are then compared, and a root finder is used to
vary the frequency iteratively until the force balance �17� is
satisfied to a given tolerance.

The eigenfrequencies for modes �111� and �112� ob-
tained for T�Tc via this computational scheme are also
shown in Figure 2. These calculations used the actual pro-
files determined from xenon’s equation of state. Table II
contains values calculated at the experimental temperatures.

E. Special case: Two-layers of constant density,
T<Tc

The special case in which the density profile consists of
a liquid layer and a vapor layer, each of constant density,
holds at temperatures far below Tc . This case is useful for
understanding the nature of mode �111� in the horizontal
cell. The fluid is assumed to be inviscid and incompressible.
The flow in each layer can be taken as irrotational.

The two-layer system is perturbed about the state of zero
velocity in the standard manner,25 and then linearized. Let
the perturbation velocity fields uv

(1) and ul
(1) in each phase be

expressed as the gradient of the velocity potentials �v
(1) and

� l
(1) , respectively. Substitution of this form into the conser-

vation of mass condition yields Laplace’s equation. At each
surface of the container, the normal velocity must be zero.
The appropriate form of the perturbation potential in each
phase has the form

��1 ���̂�z �cos�qxx �cos�qyy �ei�t, �18�

where qx� j /a and qy�k/b . Substitution of Eq. �18� into
Laplace’s equation yields an ordinary differential equation in
z which has the solutions

�̂ l�z ��Al cosh�qz ��Bl sinh�qz �,

�̂v�z ��Av cosh�qz ��Bv sinh�qz �, �19�

in each phase. As before, q2�qx
2�qy

2 . The coefficients Al ,
Bl , Av , and Bv are unknown constants. From the require-
ment that the vertical velocity be zero at both the top and
bottom surfaces of the box, z��L , it follows that
Bl�Al tanh(qL) and Bv��Av tanh(qL).

A closed-form dispersion relation for the eigenfrequen-
cies can then be obtained by imposing the interfacial bound-
ary conditions. The dispersion relation takes the form

�2��� l
�0 ���v

�0 �

� l
�0 ���v

�0 ��qg tanh�qL �. �20�

The horizontal modal dependence enters through the quantity
q , which depends on the horizontal mode indices j and k .
Note that because the liquid and vapor phases each have
constant density there is no analog of the mode number l in
this case; there is a single mode for each value of q .

The frequencies resulting from Eq. �20� are plotted in
Figure 5. These calculations used Eq. �2� and the parameters
from Ref. 18 given in Table I to calculate the densities of the
liquid and vapor phases.

VI. RESULTS AND DISCUSSION

A. Horizontal cell

Figure 2 shows the results of measurements taken with
the cell’s axis horizontal and the screen’s torsion axis verti-
cal, so that the screen’s motion was horizontal. In this orien-
tation, only two modes were observed. Note that the tem-
perature dependence of both modes was continuous through
Tc . The upper mode’s temperature dependence was remark-
ably different from that of the lower mode: the ratio of the
two frequencies increased from approximately 1.2 far above
Tc , to 3.2 at Tc , to 5.2 at 20 mK below Tc . Also, with
decreasing temperature, while the mode at higher frequency
increased monotonically from 0.7 to 2.8 Hz, the mode at
lower frequency had a maximum of 1.0 Hz near Tc�20 mK.
�The experimental values for the horizontal cell are tabulated
in Table II.�

Before we could calculate the internal-wave frequencies
and compare them with the observed frequencies, we had to
approximate the cell’s internal volume by a simple shape and
identify the observed modes.

As mentioned earlier, the frequency calculations as-
sumed the xenon was contained in a rectangular box. �See
Figure 3b.� As explained below, this is a reasonable approxi-
mation to the cell’s geometry. The box was assigned the
dimensions

x-width�a�7.6 mm,
y-length�b�38 mm,

z-height�2L�19 mm.

The width a was chosen as the distance between the front
pair of fixed electrodes. The length b was defined as the
cell’s length, and the height 2L as the cell’s height. This
approximation ignored the various supporting 1-mm diam-
eter wires, whose hydrodynamic cross-section was only a
small fraction of the cell’s cross-section, and the screen it-
self, because of its small mass and weak mechanical stiff-
ness. The approximation also assumed the opposing pairs of
electrodes acted as rigid, vertical walls spanning the cell’s
height and length. In reality, each pair occupied only 1/3 of
the area 2Lb . However, the pairs overlapped all of the
screen except for a small portion near the torsion axis, where
the screen’s motion was small.

Symmetry was important in assigning the correct triplet
of indices ( jkl) to each of the two observed modes. We first
assumed symmetrical placement of the oscillator and the
fixed electrodes. We also assumed the oscillator’s velocity
was significant in only the x-direction. Location of the oscil-
lator in the plane x�0 immediately eliminated from consid-
eration modes with even j because they have u�0 in this
plane. It also eliminated modes with even k or odd l because
their symmetries gave no net coupling to the screen. Thus,
only modes such as �112�, �114�, . . . , �132�, �134�, . . . ,
�312�, �314�, . . . , etc. were considered. These considerations
are illustrated in Figure 8.

Of the modes allowed by symmetry, some, such as
�114�, were eliminated because a superposition of the oscil-
lator’s dimensions on the nodal map indicated approximate
cancellation of the net torque on the oscillator. �See Figure
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8.� Finally, modes with a large index were eliminated be-
cause their net coupling to the screen was small. From the
above reasoning, the lower observed mode was identified as
�112�.

The other observed mode was identified as �111� even
though �111� has odd l and thus would not be excited in a
perfectly symmetrical cell. The identification with �111� was
considered because the calculated frequencies of modes with
even l , such as �112� and �132�, could not even qualitatively
match the observed temperature dependence. The identifica-
tion with �111� was consistent with the screen’s asymmetric
location. Careful measurement of the screen’s position
within the cell showed a 0.7 mm vertical displacement from
the cell’s center, or about 19% of the screen’s half-height.
This asymmetry allowed significant coupling between the
screen’s motion and the �111� mode.

Figure 2 compares the frequencies measured in the hori-
zontal cell with the frequencies calculated numerically for
the modes �111� and �112�. The calculated frequencies used
the physically correct density profiles derived from Eqs. �1�.
With no adjustable parameters, the calculations successfully
describe the measured frequencies to within 15%.

More importantly, the calculations match the differing
temperature dependences of the two modal frequencies. The
nonmonotonic temperature dependence of mode �112� can be
understood by referring to Figure 9a. This mode’s flow field
has little vertical component near the cell’s middle height,
where the density gradient is large near Tc . Thus, the restor-
ing force and associated frequency are smaller than if the
density gradient were uniform. In contrast, mode �111� has

significant flow near z�0, and thus it can sample the density
gradient peak more effectively.

B. Vertical cell

Figure 10 shows the results of measurements taken when
the cell’s axis was vertical and the screen’s torsion axis was
horizontal. In this orientation, the highest frequencies were
the same as in the horizontal orientation. However, in con-
trast to the horizontal orientation, there were as many as five
modes at a single temperature, including at least one low-
frequency mode near 0.6 Hz with very little temperature de-
pendence. The close spacing of modes complicated the ob-
servations, and beating with a nearby mode was seen
occasionally. The designations ‘‘strong’’ and ‘‘weak’’ on
Figure 10 are qualitative measures of the excited mode’s
amplitude.

We approximated the cell’s geometry by a rectangular
box whose dimensions differed from those used for the hori-
zontal orientation only in the interchange of the values of b

FIG. 8. Symmetry and geometry determined which internal wave modes
coupled to the oscillating screen. The cell is in the horizontal orientation and
the screen’s location in the yz plane is indicated by the rectangular outline.
�a� Examples of modes whose symmetry did not allow coupling to oscillat-
ing screen. �A slight vertical displacement of the oscillator allowed coupling
to mode �111�.� �b� Examples of modes allowed by symmetry but discour-
aged by geometrical cancellation of torques on the screen. �c� Examples of
modes allowed by both symmetry and geometry.

FIG. 9. Plots of the squared Brunt-Väisälä frequency N2 and the vertical
component of the velocity ŵ calculated as a function of the normalized
height. �a� At Tc�1 mK, mode �111� is nearly symmetric and strongly
samples the steep density gradient near the cell’s midplane. In contrast,
mode �112� has little vertical velocity near the midplane. �b� At Tc�29 mK,
mode �112� is confined almost entirely to the upper, vapor half of the cell,
and thus its frequency is determined chiefly by the average value of N2 in
that region.
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and 2L , consistent with the rotated orientation. As with the
horizontal cell, symmetry suppressed certain modes, and thus
only modes such as �101�, �103�, . . . , �121�, �123�, . . . , etc.
were considered. However, fewer of the modes allowed by
symmetry were eliminated by approximate cancellation of
the net torque on the oscillator. Thus, at least four modes,
�101�, �103�, �121�, and �123�, seemed highly likely. This is
consistent with greater number of observed modes observed
in the vertical cell.

Figure 10 shows the frequencies for these four modes
calculated from the actual density profile by the pseudospec-
tral collocation method. The frequencies calculated for
modes �101� and �121� describe the highest frequency data.
As was the case for the horizontal cell, the oscillator’s asym-
metric location allowed coupling to the �111� mode. How-
ever, modes with similar vertical dependence and thus simi-
lar temperature dependence ��101� and �121�� were allowed,
even without the asymmetry. Thus mode �111� was not in-
cluded in Figure 10. However, because the other modes do
not describe the lowest frequency data, the frequency calcu-
lated for mode �105� is shown also. This mode was allowed
by the cell’s symmetry, and its calculated frequency shows
the same weak temperature dependence observed at the low-
est frequencies.

C. Discrepancies between the calculated and
experimental frequencies

In the cell’s horizontal orientation, the measured fre-
quencies are typically 10% higher than the numerically cal-
culated frequencies. We considered three possible causes for
this discrepancy. The first was the contribution of the oscil-
lator’s stiffness to that of the combined fluid-oscillator sys-
tem. Knowledge of the oscillator’s resonance frequency in
vacuum, the viscous coupling between the oscillator and the
fluid, and the ratios of the kinetic energies stored in the os-

cillator and in the fluid allowed us to quantify this effect. The
calculated increase in � was only 1%, insufficient to explain
the discrepancy.

The second possible cause was error in the parameters
k or a used in the scaling equation of state for xenon, Eqs.
�1�. For example, � � �k is approximately true both above
and below Tc ; thus, a 20% increase of k over the experimen-
tal value would decrease the discrepancy to the level of un-
certainty in � . One check on the accuracy of the parameters
k and a comes from the assumption of two-scale-factor uni-
versality near the critical point, which leads to the prediction
of a dimensionless ratio proportional to the product ak . Sen-
gers and Moldover26 made this comparison for xenon and
found agreement between the experimental and theoretical
values for ak . However, the experimental uncertainties in
their comparison do not exclude the possibility of a system-
atic error in k of 20%.

The third possible cause is the difference between the
ideal geometry of the rectangular box used in our calcula-
tions and the actual geometry of the cell used in the experi-
ment. The rectangular box modeled the cell’s central vol-
ume, defined by the 7.6 mm gap between the stationary
electrodes. However, this volume was actually connected to
smaller side volumes between the electrodes and the cell’s
walls. Because these side volumes had gaps less than 6 mm
wide, their characteristic internal wave frequencies were
higher than those for the central volume. Thus, coupling be-
tween the side volumes and the central volume may have
caused the discrepancy.

D. Comparison of the analytical to the numerical
results

The analytically calculated special cases, where the den-
sity profile is approximated by simple functions, give physi-
cal insight to the numerical results based on the actual den-
sity profile. Figure 5 shows that, far from Tc , these
approximations yield frequencies which agree with those cal-
culated from the actual density profile.

At temperatures above Tc�60 mK, the sample’s density
gradient was approximately linear in z . Approximation of
�(z) by an exponential allowed use of the simple expression
Eq. �10�, which gave internal-wave frequencies similar to the
numerical solution. For this special case, we derived the
characteristic Brunt-Väisälä frequency N from the maximum
density gradient at the cell’s middle. At temperatures closer
to Tc , the exponential model for �(z) was no longer valid,
as demonstrated in Figure 5 by the disagreement with the
frequencies calculated from the actual density profile.

At temperatures below Tc�5 mK, the density profile
was approximately two layers of constant density separated
by a sharp interface. This allows use of Eq. �20� to calculate
the frequency of mode �111�. As shown in Figure 5, this
approximation is valid much closer to Tc than the exponen-
tial approximation used above Tc . The success of the two-
layer model can be understood by examining Figure 9b,
which contrasts the eigenfunctions ŵ(z) of modes �111� and
�112� derived from the actual density profile at Tc�29 mK.
For mode �111�, the form of ŵ(z) is very nearly the same as

FIG. 10. Internal wave frequencies measured �circles� and calculated �lines�
with the cell’s axis held vertical. As many as five modes could be seen at
one temperature, consistent with the greater number of modes allowed by
symmetry than for the horizontal orientation. ‘‘Strong’’ and ‘‘weak’’ indi-
cate the excited mode’s observed amplitude.
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the hyperbolic functions which appear in the two-layer
model. �See Eq. �19�.�

This two-layer model with constant densities cannot ex-
plain mode �112� below Tc , which, as shown in Figure 9b,
has vertical motion predominantly in the vapor region. Thus,
�112� is approximately an internal wave mode confined to
the vapor region, whereas �111� is approximately an inter-
face mode. Neglect of the liquid layer entirely and assump-
tion of an exponential density profile �constant N2� within
the vapor phase allows for the calculation of mode �112�’s
frequencies from Eq. �10�. For this special case, we derived
the characteristic Brunt-Väisälä frequency N from the
height-averaged density gradient in the cell’s upper half. Fig-
ure 5 shows that this gives a good approximation of the
temperature dependence calculated for mode �112� from the
actual density profile.

VII. CONCLUSIONS

In our measurements, by cooling the temperature only
140 mK, we changed the xenon’s density profile from linear,
to sigmoid, to discontinuous. In the horizontal cell, the re-
sulting large increase in the density profile’s gradient in-
creased the frequency of mode �111� by a factor of four. The
large increase in the density profile’s nonlinearity increased
the separation of modes �111� and �112�, so that their fre-
quency ratio increased from 1.2 to 5.2. Our calculations of
the internal wave modal frequencies, based on the actual
density profile expected from xenon’s equation of state,
agreed to within 15% with the measured values.

The symmetry of the internal wave modes was important
because it restricted which fluid modes could couple to the
oscillating screen. For the cell’s horizontal orientation, this
restriction greatly simplified the observations: only two,
well-separated modes were observed.

The modal symmetry was also important in understand-
ing the different temperature dependences of the observed
modes. Mode �111�, with a large vertical amplitude near the
cell’s middle height, evolved into an interface mode as the
temperature was cooled below Tc . In contrast, mode �112�
evolved into an internal wave mode trapped in the cell’s
upper, vapor half. Analytical calculations assisted this under-
standing. The special case of an exponential density profile
approximated the frequencies of modes �111� and �112� far
above Tc , and, when applied to the cell’s upper half only, it
approximated the frequencies of mode �112� below Tc . The
special case of two layers of constant density explained the
frequencies of mode �111� below Tc .

The analytic special cases could not explain the differing
temperature dependences of �111� and �112� just above Tc ,
especially �112�’s nonmonotonic temperature dependence.
However, Figure 9 provides physical understanding by plot-
ting the amplitudes of both modes and N2(z)��(g/
�)(d�/dz). The two modes differ greatly in their sampling
of N2: at Tc�1 mK, the region of large N2 is too narrow to
affect the �112� mode.

Our results suggest two further applications of internal
wave modes in nearly critical fluids. First, the fluid’s equa-
tion of state could be improved. The parameter k used in the
scaling equation of state came from optical measurements of

the static density profile.19 Measurements of the frequencies
of internal-wave modes in a well-defined container would
offer an independent check on the optical measurements of
k and would perhaps have greater accuracy. Second, nearly
critical fluids may be superior to stratified salt-water for
some investigations of internal waves. A wide variety of
density profiles is available not only by adjusting the tem-
perature but also by adjusting the sample’s average density.
Because these profiles are the fluid’s equilibrium state, pro-
file disturbances caused by the measurement itself, breaking
of waves for example, are eliminated simply by waiting for
equilibration.
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